Sensing with magnetic dipolar resonances in semiconductor nanospheres.
نویسندگان
چکیده
In this work we propose two novel sensing principles of detection that exploit the magnetic dipolar Mie resonance in high-refractive-index dielectric nanospheres. In particular, we theoretically investigate the spectral evolution of the extinction and scattering cross sections of these nanospheres as a function of the refractive index of the external medium (next). Unlike resonances in plasmonic nanospheres, the spectral position of magnetic resonances in high-refractive-index nanospheres barely shifts as next changes. Nevertheless, there is a drastic reduction in the extinction cross section of the nanospheres when next increases, especially in the magnetic dipolar spectral region, which is accompanied with remarkable variations in the radiation patterns. Thanks to these changes, we propose two new sensing parameters, which are based on the detection of: i) the intensity variations in the transmitted or backscattered radiation by the dielectric nanospheres at the magnetic dipole resonant frequency, and ii) the changes in the radiation pattern at the frequency that satisfies Kerker's condition of near-zero forward radiation. To optimize the sensitivity, we consider several semiconductor materials and particles sizes.
منابع مشابه
Magneto-Optical Activity in High Index Dielectric Nanoantennas
The magneto-optical activity, namely the polarization conversion capabilities of high-index, non-absorbing, core-shell dielectric nanospheres is theoretically analyzed. We show that, in analogy with their plasmonic counterparts, the polarization conversion in resonant dielectric particles is linked to the amount of electromagnetic field probing the magneto-optical material in the system. Howeve...
متن کاملSensing with HRI nanoparticles by means of the linear polarization degree
The spectral evolution of the linear polarization degree (PL) at right-angle scattering configuration (θ=90o) is numerically studied for high refractive index (HRI) dielectric nanoparticles. The goal of this research is oriented to sensing purposes. This analysis is performed as a function of the refractive index of the surrounding medium, and it is compared with the more conventional extinctio...
متن کاملMapping magnetic fields of Fe3O4 nanosphere assemblies by electron holography
Crystalline Fe3O4 nanospheres with averaged diameters of 150 nm have been synthesized by a facile solvothermal method and characterized using transmission electron microscopy and electron holography. The nanospheres can self-assemble into either chain-like or ring-like shapes with sizes of a few micrometers, where large magnetic moments are found for individual particles at the remanent state a...
متن کاملStrong magnetic response of submicron silicon particles in the infrared.
High-permittivity dielectric particles with resonant magnetic properties are being explored as constitutive elements of new metamaterials and devices. Magnetic properties of low-loss dielectric nanoparticles in the visible or infrared are not expected due to intrinsic low refractive index of optical media in these regimes. Here we analyze the dipolar electric and magnetic response of lossless d...
متن کاملMagnetic Sensing Potential of Fe3O4 Nanocubes Exceeds That of Fe3O4 Nanospheres
This paper highlights the relation between the shape of iron oxide (Fe3O4) particles and their magnetic sensing ability. We synthesized Fe3O4 nanocubes and nanospheres having tunable sizes via solvothermal and thermal decomposition synthesis reactions, respectively, to obtain samples in which the volumes and body diagonals/diameters were equivalent. Vibrating sample magnetometry (VSM) data show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 21 20 شماره
صفحات -
تاریخ انتشار 2013